Как проверить цепи питания
Что такое прозвонка, и как проверить цепь на обрыв мультиметром
В современном быту нередки ситуации, когда необходимо прозвонить тестером определённую цепь или электротехнический прибор. Чаще всего они возникают, когда перестаёт работать розетка или клавишный выключатель, а также при пропадании контакта или обрыве в цепях питания отдельных устройств. Если хозяин привык всё делать самостоятельно, ему необходимо обзавестись очень практичным и удобным в эксплуатации прибором, называемым мультиметром.
С его помощью можно проверить исправность любого электротехнического устройства, включая обычную лампочку, участок проводки или входящий в неё проводник. Но для того чтобы грамотно прозвонить цепь мультиметром, сначала следует ознакомиться с основными приёмами работы с ним.
В следующих разделах статьи каждый из возможных вариантов применения мультиметра будет рассмотрен более подробно.
Проверка на целостность (поиск нужного проводника)
Для проверки целостности электропроводки или поиска одной жилы в составе многожильного кабеля вполне достаточно цифрового тестера, включённого в режиме измерения сопротивления. При проведении такой операции необходимо создать замкнутую цепочку, состоящую из непосредственно из мультиметра (тестера), пары измерительных «концов» и самого проверяемого проводника.
При этом по тестируемому участку пропускается небольшой по величине электрический ток, а мультиметр определяет величину его внутреннего сопротивления. Это еще не прозвонка, но довольно удобный способ.
В процессе такой проверки по показаниям дисплея мультиметра можно будет судить о целостности или обрыве в проверяемом участке цепи или проводнике. Нулевые или близкие к нескольким Омам показания означают, что проводка не имеет обрыва; при этом выдаваемый прибором электрический ток свободно через неё протекать.
Также возможен вариант, когда при проверке обнаруживается, что прибор индицирует показания в районе мегаом, а при контрольной прозвонке не выдаёт звукового сигнала. Это означает, что на участке проводки имеется не определяемый визуально внутренний обрыв.
По сути позвонка – это определение мультиметром, есть контакт между проводами, или его нет. Мультиметр выдает небольшой ток, и если цепь целая, то фиксируется напряжение, в результате раздается звуковой сигнал – звонок, а на дисплее мультиметра высвечиваются нули. Прозвонкой проверяют предохранители, лампочки, провода, целостность схем.
Подобным образом с помощью прозвонки мультиметром фиксируется короткое замыкание проводников, которые в рабочем состоянии не должны иметь между собой контакта. В исправном кабеле каждая отдельная жила при проверке должна показывать небольшое сопротивление (от долей до нескольких Ом).
Значение сопротивления определяется общей длиной проверяемого мультиметром кабельного изделия. Одновременно с этим между всеми входящими в состав многожильного кабеля и расположенными рядом проводниками контакт должен отсутствовать, что и проверяет прозвонка.
Проверка проводки
Прозвонка проводников с помощью мультиметра функционально предусмотрена в большинстве цифровых приборов этого класса. Для выставления режима прозвонки достаточно установить переключатель в положение, помеченное значком «Зуммер» и подготовить измерительную цепочку, приведённую на рисунке.
В случае протекания тока через проверяемый кусок провода мультиметр будет выдавать звуковой сигнал (зуммер). Естественно, что для прозвонки участка цепи длиной в несколько метров потребуется дополнительный провод, используемый для наращивания измерительной схемы.
Другой вариант тестирования фазного и нулевого линейных проводников значительной длины предполагает их скрутку на удалённом конце электропроводки.
В этом случае для проверки цепи на обрыв достаточно подключить измерительные щупы мультиметра к свободным контактам тех концов электрической линии, которые располагаются ближе к прибору.
Последний из предложенных вариантов обладает следующими преимуществами:
- этим способом удаётся прозвонить мультиметром сразу обе жилы электропроводки, соединённые в последовательную цепочку;
- проверить провод таким способом намного проще, чем первым, поскольку можно обойтись без дополнительного отрезка, обеспечивающего наращивание измерительной схемы.
Перед проверкой скрытой в толще стен электропроводки в первую очередь следует внимательно ознакомиться со схемой её прокладки. Кроме того, необходимо снять с неё рабочее напряжение, отключив соответствующий этой линии автомат.
С помощью подручных средств
Прозвонка проводов мультиметром не является единственно возможным вариантом их тестирования на целостность или обрыв. Убедиться в исправности любого линейного проводника можно и без помощи этого универсального прибора.
Для проведения такой проверки потребуются:
- обычная батарейка питания (лучше всего квадратная на 4,5 Вольта);
- электрическая лампочка на 3,5 Вольта, посредством которой проверяется (контролируется) исследуемый линейный участок провода;
- пара соединительных проводов и коннектор захватывающего типа (так называемый «крокодил»).
После подготовки всех необходимых элементов на их основе собирается простейшая измерительная цепочка, состоящая из контрольной лампочки, батарейки и проверяемого проводника. При правильно собранной схеме и в случае исправности тестируемого участка контрольная лампочка будет загораться. Отсутствие свечения при всех исправных элементах схемы свидетельствует об обрыве в самом проводнике.
При испытаниях указанным способом используется тот же принцип, что и при проверке с помощью мультиметра, включенного в режим прозвонки.
Особенности проверки проводов, входящих в состав различных устройств
Сначала рассмотрим особенности работы в условиях, когда посредством прозвонки мультиметром проверяется бортовая проводка современного автомобиля.
Автомобильная проводка
Специфика этой ситуации заключается в том, что разводка в рассматриваемом случае состоит из одного линейного проводника с питающим напряжением 12 Вольт. При этом в качестве второй (общей или «земляной») жилы используется металлический корпус автомобиля, где, как правило, обрываться нечему.
Для подготовки бортовой сети к обследованию в первую очередь необходимо отключить плюсовую клемму от аккумулятора, после чего можно смело приступать к работам. Тестирование бортовой проводки организуется по уже описанной ранее схеме прозвонки линейных цепей.
При проверке «массы» автомобиля основное внимание уделяется качеству контакта подводящих клемм с корпусом.
Электрический ТЭН
Ориентируясь на показания индикатора на мультиметре, удаётся сделать прозвонку такого элемента, как водонагревательный ТЭН. В процессе проверки контрольными щупами прибора прикасаются к двум контактным пластинам нагревателя и оценивают его внутреннее сопротивление по индикатору.
Если дисплей показывает порядка нескольких Омов, то без сомнения, элемент исправен. При больших значениях на экране, соответствующих обрыву проверяемой линии, сразу можно сказать, что ТЭН повреждён и должен быть заменён.
Помимо самого нагревательного элемента, при проверке бойлеров и подобных им приборов очень важно прозвонить подводящий кабель на предмет его нежелательного контакта с корпусом устройства. С этой целью один из щупов мультиметра поочерёдно подсоединяется к входным контактам; при этом второй конец постоянно держится на корпусе нагревателя.
В случае, когда цифровой мультиметр при измерении показывает какое-то сопротивление – это значит, что повреждена защитная оболочка подводящего кабеля. Для предотвращения поражения пользователя электрическим током, его следует заменить новым.
Другие бытовые приборы и детали
При помощи мультиметра можно протестировать и цепь питания любого осветительного прибора путём прозвонки проводки и вспомогательных элементов (переключателей, в частности) на короткое замыкание или обрыв. Для этого, прежде всего, следует прозвонить две линейные цепочки, заканчивающиеся непосредственно на контактах электрической лампочки.
Дополнительная информация! Перед прозвонкой осветительного устройства в первую очередь убедитесь в исправности самой лампочки, переставив её в заведомо исправный прибор.
В процессе прозвонки линейных цепочек обязательно проверьте исправность стоящего в одной из них переключателя, а также надёжность подсоединения проводников с его контактами.
Также отметим, что указанным способом можно будет прозвонить обмотки линейного трансформатора или электродвигателя и убедиться в их целостности или в наличии обрыва (КЗ).
В заключение ещё раз напомним, что посредством мультиметра удаётся проверить не только отдельные провода или скрытую в толще стен проводку, но и любые другие электрические приборы и детали.
Ремонт систем питания ноутбука
Не горят индикаторы питания ноутбука
Сервисный центр Антарес, СПб Большой Проспект Петроградской Стороны дом 100 офис 305 телефон (812) 922-98-73
Ремонт питания материнских плат ноутбука. Данный вид ремонта относится к самому сложному разделу в области ремонта ноутбуков, он заключается в знании элементной базы и работы микросхем в данном ноутбуке. Благодаря своему накопленному опыту, знаниям и умениям мы готовы выполнить данный вид ремонта в течение нескольких часов и восстановить работу вашего ноутбука в кратчайшие сроки с минимальными с вашей стороны денежными затратами.
Стоимость ремонт питания материнских плат ноутбука от 800 рублей
Сервис выполняет — Перечень наших работ ремонт систем питания
- Диагностика
- Разборка ноутбука
- Ремонт питания материнской платы
- Восстановление материнской платы
- Замена элементов на плате
- Сборка, проверка
Элементарным примером ремонта цепи питания ноутбука можно назвать. Замену блока питания ноутбука, перепайку разъема питания ноутбука, ремонт штекера блока питания. Ремонт материнской платы довольно сложный и трудоемкий процесс. Как правило, производится после предварительной диагностики ноутбука. Профессиональные знания в области схемотехники ноутбука обязательны.
Стоимость работ — Цены указаны с учетом запчастей
Ремонт систем питания ноутбука | стоимость / руб |
---|---|
Ремонт питания материнской платы замена компонентов | от 3500 |
Восстановление питания материнских плат после залития | от 2000 |
Восстановление питания материнских плат после короткого замыкания | от 2000 |
Ремонт питания Apple | от 3000 до 8000 |
Замена разъёма питания | 2000 |
Ремонт штекера блока питания | от 800 |
Как мы знаем любой ноутбук подключается в электрическую розетку. Напряжение переменного тора в сети России составляет 220 вольт. Однако ноутбук работает от переменного тока и в большинстве случав от напряжения 19 воль постоянного тока.
В внутри ноутбука есть устройства, которые работают от 3 и от 5 вольт. Откуда берется это напряжения. Данное напряжение формируется специальными устройствами, которые составляют цепи питания ноутбука. Во время эксплуатации ноутбука из-за небрежного обращения, залили ноутбук, или скачков напряжения происходит разрыв цепей питания ноутбука. И можем наблюдать картину, при которой ноутбук не включается, не путать с тем, что ноутбук не загружает операционную систему.
Также ноутбук может нереагировать на кнопку включения, не работать без батареи, или при включении загореться.
Помимо перечисленных выше поломок питания есть еще отдельные цепи, которые как раз и формируют напряжения от 1,5 до 24 вольт и используются для питания процессора, оперативной памяти, чипсета, жесткого диска, матрицы, и многих других устройств в ноутбуке. Расположены они как правило на материнской плате ноутбука.
Ремонт таких цепей очень трудоемкий процесс он требует фундаментальных знаний схемотехники, а что не мало важно это наличие запчастей и специального оборудования. Данный вид ремонта невозможно выполнить на дому.
Допустим, в результате короткого замыкания или залития ноутбука, каскадом выгорают несколько элементов, тогда необходимо методом поэтапного их выявления и замены, восстанавливать работоспособность ноутбука.
Пробои в цепи питания ноутбука частенько случаются из-за скачков напряжения в сети. Так же использование не оригинальных блоков питания или не соответствующих требуемым характеристикам по вольтажу и потребляемому току, приводит к выходу из строя цепей питания и заряда, при этом значительно сокращается срок жизни аккумулятора.
Последовательность включения ноутбука
Для диагностики неисправности материнской платы ноутбука нужно знать последовательность ее включения.
Приводим схему последовательности включения ноутбука
При включении ноутбука дежурное напряжение через кнопку подается на мультиконтроллер, который запускает все контроллеры ШИМ, вырабатывающие все напряжения (их много), и, при нормальном исходе, вырабатывают сигнал PowerGood. По этому сигналу снимается сигнал resetс процессора и он начинает выполнять программный код, записанный в BIOS с адресом ffff 0000.
Затем BIOS запускает POST (PowerOnSelfTest), который выполняет обнаружение и самотестирование системы. Во время самотестирования обнаруживается и инициализируется видеочип, включается подсветка, определяется тип процессора. Из данных BIOS определяется его тактовая частота, множитель, настройки. Затем определяется тип памяти, ее объем, проводится ее тестирование.
После этого происходит обнаружение, инициализация и проверка подключенных накопителей – привода, жесткого диска, картридера, и др., а после проверка и тестирование дополнительных устройств.
После завершения POST управление передается загрузчику операционной системы на жестком диске, который и загружает ее ядро.
Если питание не появляется, светодиод питания не горит.
Ищем неисправность в схеме управления питанием. Проверяем Мультиконтроллер — микросхему, управляющую схемами ШИМ, формирования напряжений. Также в нем встроены контроллеры периферии (клавиатуры, мыши, температуры, вентилятора, аккуиулятора, тачпэда и др.). Иногда в мультиконтроллер входит контроллер USB. Часто это микросхема ITE. На мультиконтроллер подается напряжение питания непосредственно с адаптера (обычно 19В), а дальше передается на другие устройства. Таким образом контроллер управляет процессом включения в ноутбуке.
За распределение питания может отвечать и схема коммутации питания (например, может быть чип MAXIM). Она отвечает за переключение питания с внешнего адаптера на питание от батареи, контролирует зарядку и др.
В некоторых случаях слетает прошивка микроконтроллера. В этом случае ноутбук не запускается, хотя все напряжения присутствуют и нужные сигналы подаются.
Остались вопросы? Свяжитесь с нами по телефону: +7 (812) 922 98 73
Поговорим о фазах питания процессора
Когда речь заходит о материнских платах, разговор практически никогда не обходится без того, сколько фаз питания процессора применено в той или иной модели. Этот параметр не часто указывается в спецификациях на материнскую плату, но непременно фигурирует в обзорах той или иной модели, да и на многочисленных форумах и обсуждениях системных плат и/или чипсетов о питании CPU речь заходит всегда. Иногда упоминание о количестве фаз присутствует в рекламных материалах или на коробке материнской платы. Фазы питания процессора – что это, что они делают, для чего нужны и сколько их вообще надо? Давайте разбираться.
Что такое фазы питания
Чтобы знать, о чем собственно речь, давайте обратимся к фотографии материнской платы, вернее, к части ее, расположенной возле процессорного сокета. Вот типичная картина того, что можно увидеть на любой плате.
Что-то похожее вы сможете найти и на своей. Разница будет только в количестве компонентов, окружающих сокет.
Если рассматривать устройство каждой фазы питания, то можно выделить несколько блоков по своему назначению.
Все обозначения постепенно станут понятны.
Итак, что это такое? Современные блоки питания (БП) выдают напряжения ±12 В, ±5 В и ± 3.3 В. Однако современным процессорам необходимо гораздо меньше – порядка одного вольта, отклоняясь в ту или иную сторону в зависимости от нагрузки. При этом, если посмотреть на спецификации CPU, мы найдем такой параметр, как «Расчетная мощность» (он же TDP – расчетная тепловая мощность). В данном случае это величина, относящаяся к системе охлаждения, которая должна справляться с такой тепловой мощностью. Данное значение не эквивалентно энергопотреблению процессора, тем более оно меняется в зависимости от нагрузки и нагрева, но весьма близко к нему.
Так, если обратиться к спецификации CPU Intel Core i7-7700, то расчетная мощность составляет 65 Вт. В нашем случае не столь важно, сколько точно потребляет данный процессор. Просто предположим, что его энергопотребление и составляет 65 Вт.
Значит, система питания CPU должна обеспечить подвод такой мощности. Т. к. готового напряжения от блока питания мы не получаем, значит, придется подготовить нужное его значение. Для этого и служит система питания CPU.
Устройство и принцип действия
В качестве исходного напряжения берется +12 В, которое поступает непосредственно от используемого БП. Теперь надо выполнить преобразование, понизив напряжение до нужного значения. Этим занимается VRM (Voltage Regulation Module — модуль регулирования напряжения).
Сам VRM состоит из нескольких частей, это:
- PWM-контроллер (ШИМ-контроллер).
- Драйвер.
- MOSFET-транзисторы.
- Дроссель (индуктивность).
- Конденсатор.
Сейчас часто драйвер и пара MOSFET-транзисторов объединены в один корпус, а не являются дискретными элементами. Сути дела это не меняет. В одном корпусе или в разных — все это перечень компонентов, составляющих фазу питания CPU.
Основным управляющим элементом выступает PWM-контроллер. (Напомню, что аббревиатура PWM расшифровывается как широтно-импульсная модуляция – ШИМ). Он генерирует прямоугольные импульсы с установленной частотой, амплитудой и скважностью. Они подаются на электронный ключ (драйвер).
Скважность импульса определяет уровень выходного напряжения, которая вычисляется как отношение периода к длительности импульса. Таким образом, этот электронный ключ постоянно подключает/отключает входное напряжение, равное +12 В, к этому напряжению подключена нагрузка.
Сам электронный ключ состоит из пары MOSFET-транзисторов (n-канальные полевые МОП-транзисторы) под управлением драйвера. Эти транзисторы попеременно открываются-закрываются таким образом, что при открытии одного второй закрыт. Один из транзисторов своим стоком подключен к шине питания 12 В, второй — истоком к общему проводу. Сигнал от PWM-контроллера поступает на затворы, открывая и закрывая их в соответствии с частотой подаваемых сигналов.
Полученный модулированный сигнал с амплитудой 12 В поступает в LC-фильтр, т. е. через последовательно включенный дроссель (индуктивность) и параллельно подключенный конденсатор, что является нагрузкой. Возникающая ЭДС индукции не позволяет току возрастать мгновенно. В это же время происходит и заряд конденсатора. После закрытия электронного ключа та же ЭДС обеспечивает прежнее направление тока и не допускает резкого его снижения, помогает и разряжающийся конденсатор.
Чтобы не вдаваться в подробности, скажу так: в конечном итоге из импульсного сигнала выделяется постоянная составляющая, и на выходе со сглаживающего LC-фильтра получаем постоянное напряжение нужного значения. Правда, выходное напряжение будет содержать некоторый уровень пульсаций относительно среднего значения.
Для минимизирования пульсаций используют несколько таких цепей, т. е. фаз питания, которые работают таким образом, что подаваемые от PWM-контроллера импульсы в каждую фазу смещены друг относительно друга. Величина этого смещения зависит от количества используемых фаз. Т. е. смещение вычисляется как отношение периода переключения MOSFET-транзисторов к количеству фаз.
Тем самым выходной сигнал с каждого сглаживающего фильтра также смещен по отношению к другому. Также смещены будут и пульсации выходного напряжения. Результирующее напряжение будет иметь уже гораздо меньший уровень пульсаций. И это одно из преимуществ именно многофазных цепей питания – получение более стабильного уровня подаваемого на процессор напряжения.
Регулирование выходного напряжения
Современные процессоры требуют разного напряжения питания в процессе работы. Зависит это от нагрузки, и не забудем про разгон, при котором также необходимо изменять напряжение, в данном случае повышать его. Каким образом происходит автоматическая регуляция?
PWM-контроллер получает требуемое значение напряжения, считывая специальный 8-битный сигнал VID (Voltage Identifier), который может задавать до 256 уровней напряжения.
Зная требуемое значение, остается его сравнить с тем, которое подается в нагрузку. Для этого существует цепь обратной связи. Сравнение референсного напряжения и того, которое считано с нагрузки, позволяет определить, требуется ли изменить его уровень. Делается это изменением скважности PWM-импульсов. Таким образом поддерживается оптимальное напряжение питания процессора.
Почему нельзя обойтись одной фазой
Одну из причин я уже назвал – сглаживание пульсаций выходного напряжения. Есть и еще как минимум одна причина – мощность. Используемые MOSFET-транзисторы, конденсаторы, дроссели имеют предел по максимальному току. Если взять для примера CPU, потребляющий 65 Вт при питающем напряжении в 1 В, ток будет исчисляться несколькими десятками ампер.
Так, используемые элементы могут быть рассчитаны на ток до 30, 40 или более ампер, но, скорее всего, это все равно будет меньше максимального потребления электроэнергии процессором. При этом должна быть возможность установки другого CPU, у которого потребление может оказаться больше, например, 95 Вт.
Для того, чтобы гарантированно обеспечить запас мощности, и используют несколько фаз. Тем самым заодно снижается нагрузка на каждую из них и, соответственно, их нагрев. Это дает возможность использовать большое количество процессоров.
Сколько фаз действительно необходимо? Скажем так, от 4 до 8 в зависимости от процессора и при отсутствии разгона. Этого более чем достаточно. Впрочем, большее их количество не так уж и плохо, особенно при использовании мощных «камней», да еще с разгоном. В разумных пределах, конечно.
Всегда ли фаза действительно фаза
Маркетинг играет большую роль в нашей жизни. Смартфон с камерой на 16 мегапикселей априори считается лучше такого же, но с камерой «всего лишь» на 13 мегапикселей. Ну а если используется 23 мегапикселя – то это уже вообще круть!
Аналогично и с материнскими платами. В описаниях, спецификациях или рекламных материалах на ту или иную модель можно найти гордое упоминание о системе питания, использующей -дцать фаз. А у конкурента схожая по функционалу плата вполне может имеет -дцать и еще 4 фазы. Чтобы не ходить далеко за примером, возьмем плату ASRock X370 Taichi под новехонькие Ryzen. Если обратиться к сайту производителя, то в спецификациях видим упоминание, что используется 16-фазная система питания.
А ведь используемый PWM-контроллер IR35201 – восьмифазный. Получается, производитель платы врет? Нет, ну может, немного лукавит. Дело в том, что дросселей, конденсаторов, электронных ключей и проч. действительно 16. Тонкость в том, что используются устройства, называемые делителями (doublers).
Суть работы этих элементов следует из названия – разделить, распределить сигналы от одного канала PWM-контроллера на две цепочки «драйвер-ключ-фильтр». На выходе очень похоже на две фазы, только управляются они одним сигналом, работают синфазно, никакого смещения между ними для сглаживания пульсаций нет. Тогда зачем они?
Ответ – мощность. Данная плата гарантирует поддержку процессоров с потреблением до 300 Вт! Распределяя нагрузку по такому количеству фаз, удается снизить проходящий через каждую из них ток и, как результат, уменьшить нагрев силовых элементов. Впрочем, если используется действительно мощный CPU, да еще и с разгоном, то для охлаждения просто необходим радиатор. Лучше бы даже с обдувом.
В итоге, на самом деле это не 16-фазная система питания, а 8-фазная по 2 канала в каждой. Кстати, используемые на упомянутой материнской плате дроссели рассчитаны на ток до 60 А.
Думаю, все сказанное хорошо проиллюстрирует следующая картинка.
Возможен вариант без использования делителей. В таком случае ставится несколько PWM-контроллеров, которые работают синхронно. Если использовать уже упомянутый восьмифазный IR35201, установив 2 таких на плату, то вполне можно получить на выходе 16 фаз. Почти честных фаз, т. к. временнОго сдвига по всем фазам не будет.
По одной фазе от каждого PWM-контроллера будет работать синхронно, т. е. получим 8 пар (при условии, что используются 2 PWM-контроллера) фаз без временного смещения управляющего сигнала. Строго говоря, сглаживание будет такое же, как и при использовании 8 фаз, но вот мощность будет существенно выше.
А ведь можно найти платы, в которых и по 24 фазы…
Заключение. Фазы питания процессора – что это
«Режим питания нарушать нельзя», говорил один мультяшный персонаж. И это питание должно быть не только качественным, но и подаваться без сбоев. Причем в переложении на компьютерный мир необходимо учитывать изменяющиеся условия, при которых не только потребление процессора изменяется при разных ситуациях, но и он сам может быть заменен более прожорливым.
Система питания CPU, содержащая n-ое количество фаз, обеспечивает надежную его работу. Кстати, все сказанное верно и для видеокарт. Электропитание GPU осуществляется аналогично. А то, что производители стараются запихнуть на свои материнские платы, особенно дорогие, побольше этих фаз… С этим придется смириться. Вряд ли есть реальная необходимость в 24-х фазах, но покупатель всегда ведь ведется на красивые слова и любит большие цифры, конечно, если только это не ценник.
Ремонт цепи питания платы ноутбука
Результатом различных воздействий на ноутбук нередко становится повреждение материнской платы. Это одни их самых сложных видов поломок, поскольку вся схемотехника многих моделей ноутбуков представлена только элементами системной платы, а значит, проблема может заключаться в любом из компонентов.
Что представляют собой цепи питания ноутбука
Внутренние силовые цепи ноутбуков HP, Acyc, Acer, Sumsung отвечают за получение электроэнергии от внешнего блока питания, ее преобразование и доставку конечным потребителям — ключевым элементам платы и подключенным к ней устройствам и узлам: центральному процессору, графическому адаптеру, оперативной памяти, дисковым накопителям, USB-портам и т. д. И если неисправность ноутбука проявляется неработоспособностью одного или нескольких узлов, вероятной причиной может быть не повреждение самого узла, а то, что он не получает питающего напряжения.
Схемы цепей питания ноутбуков достаточно сложны и представлены каскадом множества элементов: стабилизаторами напряжения (ШИМ) и обвязкой — дополнительными стабилизаторами, конденсаторами, резисторами, транзисторными ключами, катушками и т. д, которые, получая электроэнергию из первичной цепи, формируют на выходе несколько уровней напряжения, требуемых конечным узлам. При выходе из строя любого из элементов цепи, например, вследствие короткого замыкания, необходимо его найти и заменить. А чтобы это сделать, а также и восстановить участок, поврежденный замыканием, необходимо специальное оборудование и профессиональная подготовка.
Почему повреждаются силовые цепи?
Причин, по которым выходят из строя цепи питания материнской платы ноутбука достаточно много, и основные из них, это:
- перепады напряжения в электросети;
- неисправность внешнего блока питания;
- использование универсальных низкокачественных блоков питания, не имеющих защиты по току и выдающих напряжение, не соответствующее требуемому;
- неисправность аккумуляторной батареи;
- плохой контакт в разъеме питания, вследствие его повреждения;
- попадание жидкости внутрь ноутбука, вызывающее окисление контактов и коррозию токоведущих дорожек;
- сильные удары по корпусу, которые могут привести к нарушению пайки и повреждению элементов платы;
- эксплуатация ноутбука в нештатном режиме, приводящая к длительному перегреву;
- низкокачественные радиоэлементы, установленные на плату производителем, особенно часто — полярные электролитические конденсаторы.
Проявления неполадки
Основные признаки нарушения цепей питания на плате будут зависеть от степени и локализации повреждения: в случае выхода из строя ключевых компонентов, либо множества из них, плата не будет работать, и ноутбук, соответственно, не будет включаться. При менее значительных повреждениях возможен полный или частичный отказ отдельных устройств.
Часто признаками короткого замыкания на плате будет следующее:
- ноутбук не включается — не реагирует на нажатие кнопки включения;
- ноутбук не инициализируется — после включения кнопкой загораются индикаторы, слышен шум вращения вентилятора и больше ничего не происходит — экран остается черным, индикатор сети может мигать;
- сразу после включения или спустя некоторое время ноутбук выключается или уходит в бесконечную перезагрузку.
В менее тяжелых случаях повреждения цепей питания встречаются отказы отдельных узлов.
Как определить, что вышло из строя и устранить проблему?
Если вы не обладаете хорошими знаниями хотя бы основ радиотехники, самостоятельно найти неисправный узел вам вряд ли удастся. Поэтому, если имеют место быть описанные проявления, как можно скорее следует показать ноутбук специалисту. Поскольку чем дольше откладывать ремонт, тем большее число элементов будет втянуто в процесс. И, в итоге, вместо восстановления поврежденного участка платы, придется менять ее целиком. А это обходится значительно дороже по стоимости.
Для поиска неисправностей цепей питания материнских плат в сервисе используется специальная техника и особые диагностические приемы, которыми владеют квалифицированные мастера нашего центра.
Устранение повреждения силовой цепи заключается в восстановлении связей и работоспособности всех ее элементов. При этом, чтобы убедиться в том, что цепь полностью исправна и способна выдерживать нагрузку, иногда требуется длительная проверка.
Для диагностики и ремонта цепей питания материнских плат ноутбуков Acer, Acyc, HP, Sumsung мы используем высокоточную профессиональную технику, качественные элементы и расходные материалы, и только в случае, если множественные повреждения устранить не возможно — предлагаем замену платы. Мы оказываем компьютерную помощь в Москве в любом районе!